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Abst rac t - -New wave models for a bubble vapour-l iquid medium and methods to specify interphase heat 
transfer are suggested. The evolution of vapour bubbles in a pressure wave and the connection of  the wave 
structure and dynamics with this evolution have been studied. A wide range of  experiments have been 
conducted to investigate the structure and dynamics of  pressure waves. New results for solving the basic 
model equations for waves in a vapour-l iquid medium are also presented and these solutions are compared 
with the experimental data obtained. 
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I. INTRODUCTION 

Vapour-liquid flows are the most widely spread working medium in up-to-date energetic apparatus. 
The pioneering investigations of the fundamental characteristics of such a two-phase medium 
(sound velocity, in particular), started by Viglin (1938), Avdonin & Novikov (1960), Sychev (1961), 
Semyonov & Kosterin (1964), Grolmes & Fauske (1968), Ardron & Duffey (1979), Mecredy & 
Hamilton (1972), Radovskii (1979), Deich et al. (1964), Kutateladze et al. (1979) and Nigmatulin 
(1982), have shown that in such a medium the sound velocity is low and that the thermal relaxation 
and strong nonlinearity due to the high compressibility of the medium play an important role. 

Thus calculations of the evolution of a vapour-liquid medium require, even for high velocities, 
mainly gas dynamic methods. The traditional gas dynamic methods do not allow one to take into 
account the most important specific characteristics of a two-phase medium (phase transitions, 
inertia of vapour inclusions). So the investigations presented here may be considered as an attempt 
to create the fundamentals of the nontraditional gas dynamics of a vapour-liquid medium, which 
allows one, !f only as a first approximation, to take into account the basic peculiarities of the 
vapour-liquid medium, heat transfer processes on the boundary, dissipation and inertial properties 
of vapour inclusions. 

2. E Q U I L I B R I U M  MODEL 

Let us describe the theory of wave propagation in a liquid with vapour bubbles, beginning with 
the analysis of the equilibrium wave model. Preliminarily we will introduce general equations and 
basic relations for the homogeneous bubble-suspension model. Further, we will use the homoge- 
neous vapour-liquid bubble-suspension model, since it seems suitable to study the wave processes 
in such media (Wijngaarden 1968; Kuznetsov et al. 1978). 

The homogeneous bubble-suspension model assumes that the mixture density 
p = p r ( I  - -  E) + pG E o r  I /p = [(i - X)/pL ] + V, where PL = liquid density, Pc = vapour density, 
c = V . p ,  where V =specific volume of the vapour in the mixture, c =void  fraction and 
X = quality. 

X is defined as X = V . p c  or X =pGE/Locc +PL(I --E)]. It is also useful to present a relation 
for the variation of the gas volume AV and that of the density Ap: 

AV Ap(I -c)2(I  - X) ap  
V c2 pc pc ' 

where CL is the second velocity of the liquid. Here we have used the acoustic relation between a 
liquid density perturbation (Ap) and a pressure perturbation (Ap) in the medium: Apt  = Ap/c~.  
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Let us define the thermodynamic characteristics of  this mixture: the entropy s = SL(I  --  X )  + SGX, 

where SL and SG are the entropies of  the liquid and of  the vapour phase; and the enthalpy 
i = it(l  - - X ) +  i G X. The equations for the evolution of the bubble mixture are as follows: 

Or O 
a5 + o~ (pu) = o, 

au au _{l  l ap, a~ + . ~ =  \ p / ~  [ll 

o; o; ( !V°p 

Here u = perturbation of velocity and p = P0 + Ap = pressure of  the mixture. The experience of 
studying waves in a liquid with gas bubbles has shown that due to the high compressibility of  the 
mixture, the nonlinearity in the original hydrodynamic equations may be omitted. The dependence 
of the sound velocity c on the amplitude of perturbations is considered to be the main source of 
the nonlinearity of  the problem, i.e. the main contribution to the nonlinearity is due to the equation 
of state (Nakoryakov et al. 1975). We will also adhere to this concept in analysing waves 
propagating in a liquid with vapour bubbles. 

The linearized system [1] can be reduced to the equation 

2p ~ 2p 
- [2] Ot 2 Ox 2 ' 

and to the adiabatic condition in the mixture during wave propagation, ds/dt = 0. The relation 
between p and density p in [2] is the crucial moment  in the wave dynamics of  two-phase media. 
In particular, studying the wave propagation in a liquid with gas bubbles, it was pointed out that 
this relation is of  a relaxational nature (Kogarko 1961; Nakoryakov  et al. 1972)p = p ( p , p , # ) ,  
whose concrete form can be determined from the dynamic and solitary-inclusion energy equations. 
For a gas-liquid medium this relation can be obtained in terms of the approximation of the 
adiabatic character of  bubble fluctuations, from the Rayleigh equation for a solitary bubble: 

where 

and 

3 p(R)  - p ~  R/~ + ~ (/~)2 _ , [3] 
PL 

4vR 
p(R)  =Po + ~ ~, 

p~ = pressure in the mixture, 

VL = liquid viscosity 

R0 = initial radius of  a bubble. 

Considering the elementary relations of  the homogeneous model, [3] can be reduced to 

Ap = c 2 Ap + 2r/t~ + 2fl#, 

where 

c2=c~ +co 6 + l A p  , 
Poto 

6po ]1.2 
co = P~o( ~ -  ~o) = sound velocity in the mixture, 

2~ L 

r /= 3~o 

[4] 

[5] 
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and 

R0 

6E0(l - Co)' 

co = initial void fraction 

"/= ratio of specific heats. 

In the equilibrium model considered we will limit ourselves to the long-wave approximation and 
neglect the relaxation effects. Then, it follows from [2] that 

dt 2 s = 0.  [6] 

Let us consider what represents (dP/OP)s in a vapour-liquid medium. The solution of  such a 
problem can be found in the book by Landau & Lifshits (1953). Let us determine, using 
thermodynamic analysis, the expression for the derivative (t3p/dp)= c:. The basic assumption of  
the equilibrium model is the instantaneous establishment of the vapour-liquid equilibrium with a 
perturbation superimposed, TL = To. Physically, the density variation process in the mixture with 
a pressure perturbation superimposed is as follows. A pressure variation Ap causes an overheat AT 
in the system, which is found from the Clapeyron-Clausius equation: 

dpo L 

where L = latent heat of  evaporation. The overheat AT brings about 

[7] 

condensation on the boundary. Naturally, it leads to a change in the bubble radius AR. It means 
that the vapour volume A V and the mixture density Ap change. So the factor of  Ap, varying due 
to Ap is (~p/~p),. Thus, in varying Ap, only X varies in the system, and PL and Pc do not vary 
and are not functions of  Ap. Using the definition of p in terms of  X, we can write 

y,p , = \ , o  [81 

To calculate the derivative (OX/~p), we will use some thermodynamic relations. The entropy of  
the mixture in the wet-vapour region is determined by two independent parameters near the 
saturation l ine--X and the temperature T. In this model the temperatures of the phase are equal. 
Then, 

d s = ( d s ' ~  d r  ( a s ' ]  dX 
\dTJ~ + \ d e J r  " [9] 

It follows from the definition of the entropy that 

+ , , _  

For the liquid on the saturation line dsL/dT = CL/T and for the vapour dsG/dT = CGT, where C L 
and Co, are the heat capacities of  the liquid and the vapour, respectively. 

Then 

( d s )  = [ X C c ; + ( I - X ) C L ] C * d - T  x ~r- = ~ - ,  [ll]  

where C ,  = [XCG + (I -- X)CL]. The physical meaning of C ,  is the amount  of  heat needed to 
increase the temperature of  1 kg of the mixture by I°C if the dryness factor is the same. 

Let us consider the expression 

= s c  - s L  = - .  [ I  2 ]  
r T 

either evaporation or 
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For an adiabatic process, when ds = 0, we get from [9] considering [10] and [12], that 

-C•dT+Ldx =0.  [13] 

Using [7], let us replace dT by dp in relation [13], 

/L dp + dX = o, 

and find (c3X/dp): 

( ~ )  = -  (-~--T~ ( IG ~L)" [14] 

The difference between the heat capacities of the dry vapour and of the water on the saturation 
line C(; - CL = ( d L / d T )  - (L /T ) .  Then C ,  = CL + X [ ( d L / d T )  - (L/T)] .  Far from the critical 
range CL ~- Cpt and 

C , = C p L +  \ d T  "~" CpL- T" 

Substituting [14] into [8] we find 

p~L  2 • 

[15] 

[16] 

Using the assumption that the vapour is an ideal gas, i.e. PG PG = B'  T, where B is the absolute 
gas constant, we obtain an expression for the square of the sound velocity: 

= 

dp ]~=c~ p2C,B2T3.  [17] 

Substituting approximately p = pL(I - - ~ ) ~  PL, C ,  = Cpt and P2 =P0, we obtain 

, poL [181 
pL X//-~pL T T B  " 

Expression [18] is sometimes referred to as the thermodynamically equilibrium sound velocity of 
a vapour-liquid medium. The wave expression [6] assumes the form 

~2p 2 ~2p 
c)t2 - ce ~ x  2 = 0. [19] 

If we substitute into [17] the values for the parameters of the steam-water medium which is on 
the saturation line under normal conditions (P0 ~ 105 Pa, T = 373 K) for a void fraction of the 
order of 1%, then the value of the thermodynamically equilibrium sound velocity will be of 
the order of 1 m/s. 

Experiments carried out specially to determine the sound velocity in a bubble vapour-liquid 
medium have not yielded such low values (Semyonov & Kosterin 1964; Grolmes & Fauske 1968). 
Nor have our experimental data on the wave propagation in such a two-phase medium enabled 
us to discover any wave propagation at a velocity defined by [18] (figure 1). 

Since in the following we will have to apply to our experiments over and over again, we will 
describe in this section the respective techniques and methods of measurement. The objective of 
our experiments was to check the correspondence of the theoretical models developed to the real 
picture of wave propagation. The respective program of experiments was developed on the basis 
of this objective. 

The experiments were conducted on a special "shock-tube" setup (figure 2). The working section 
(low-pressure chamber) is separated from a high-pressure chamber by a diaphragm-change unit. 
The working section comprises interchangeable units, namely a stainless steel pipe with i.d. 52 mm 
and a wall thickness of 8 ram. To maintain the working temperature of the medium, the working 
section was placed in thermostat which had a high heat capacity and was heated by electric heaters. 
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Figure 1. Sound velocity in a liquid with vapour bubbles vs void fraction. Weak compression wave 
Apo/Po~-O.l~).2. I, Wate r - -p0=  10SPa; 2, Freon- l l3 ,  &po/Po = 10~Pa; 3, Grolmes & Fauske (1968); 

4, Semyonov & Kosterin (1964); 5, calculation. 

The temperature of the pipe wall was maintained equal to the temperature of the working medium 
at a given pressure with an accuracy of 0.5°C. 

Vapour bubbles were generated by injecting vapour into the liquid through 0.3 mm dia 
needle-like capillaries in the lower part of the working section or, otherwise, were created on 
artificial evaporation centres during boiling. For the latter method, a heating unit was installed 
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Figure 2. Scheme of the experimental setup. I, Vapour bubbles generator; 2, test section; 3, thermostat; 
4, membrane replacement unit; 5, valve; 6, high-pressure chamber; 7, pressure sensors; 8, amplifiers; 

9, optical windows; I0, computer; II,  tape recorder. 
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below the working section; the power of the heater could vary smoothly. The temperature of the 
vapour in both cases was controlled by a thermocouple located immediately under the capillaries. 
The bubble diameter was determined by photography in the middle part of  the working section. 
The most probable value of radius R0 and the mean square deviation of  the bubble dimensions 
A were calculated by statistical techniques. For instance, for the water-steam mixture at static 
pressure P0 = 0.5 MPa, R0 = 1.38 mm and A = 0.25 ram. For the vapour-Freon mixture (Freon-12) 
at p 0 = 0 . 7 M P a ,  R 0 = l . 3 m m  and A = 0 . 2 7 m m ;  and at p 0 = l . 3 M P a ,  R0 =0 .9 5 m m  and 
A = 0.15 mm. Experimental data processing and comparison with calculations were made by means 
of R 0. 

The mean void fraction Co was determined by changing the upper level of the working section 
and introducing vapour bubbles therein. 

The high-pressure chamber is a 52 mm i.d. stainless steel pipe. The chamber length was varied 
in our experiments from 5 up to 2000 mm, which allowed us to obtain signals with a different 
duration of  the compression or rarefaction process. The fast diaphragm-change unit allows us, 
without depressurization of the internal volume of the working section, to change diaphragms 
which were made of aluminium foil of thicknesses from 0.01 up to 0.3 mm. The use of such 
diaphragms permitted us to obtain initial pressure drops between the chambers within 0.01-2 MPa. 
The rupture of  a diaphragm could be realized in two ways: spontaneously, when a certain pressure 
drop had been attained; or by means of a pneumatic knife set. 

To change the pressure profile in a perturbation wave, piezoelectric probes whose operating 
frequencies ranged from 3 Hz to 20 kHz were located along the length of the working section. The 
signal of the probe was fed to cathode followers whose input resistance was 100 m~ and had 
capacity up to l0 pF. Calibration of the pressure probes was carried out on the shock tube filled 
with air, the temperature and the pressure being equal to the working parameters of the 
vapour-liquid medium. A detailed description of the measurement technique can be found in 
Pokusaev e t  al.  (1981). 

3. T W O - T E M P E R A T U R E  MODEL 

Analysis of the experiments conducted has shown that the propagation velocity of long-wave 
perturbations can be well-generalized by the dependence of the sound velocity in a liquid with gas 
bubbles (Batchelor 1968): 

( ;"P° ' )  ~2, Co'~l. 
co = \ P o l o /  

As for the structure of pressure waves formed in a bubble vapour-liquid medium, it has been found 
out that both perturbations similar to waves in a gas-liquid medium (Kuznetsov et  al.  1978) and 
spreading pressure-wave profiles could appear in this case. 

On the basis of these experimental facts, the further theoretical analysis was built up using the 
two-temperature model. Let us formulate its main assumptions. The bubble-liquid interface is in 
thermodynamic equilibrium when a wave is propagating, and the Clapeyron-Clausius conditions 
[7] are valid on the interface. Thus the liquid is a thermostat and preserves, at a sufficient distance 
from the surface of a bubble, an initial temperature, To. The vapour inside the bubble behaves 
adiabatically. The mixture in question satisfies all the equations and relationships of a homo- 
geneous bubble mixture, which are given in the previous section. The nonlinearity occurring during 
the propagation of a wave is largely due to the compressibility of the medium. 

Let us derive an evolution equation to describe the behaviour of pressure perturbations in a 
liquid with vapour bubbles. The hydrodynamic equations of the mixture will be taken in a linear 
form [2]. The equation of the mixture state will be written without allowance for bubble radius 
variation due to phase transition. This equation is obtained from the dynamic equation of a solitary 
cavity [3], taking due account of adiabatic vapour behaviour and small amplitudes of bubble 
volume variation, and is of the form 

Ro ~ ~2p ,~p [20] 
Ap = ApG + 3%(I -- %) ~)t 2 ~- 2r /~- .  
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Putting aside this equation, the pressure difference between the mixture and the liquid is 
represented as the deviations from the initial state 

p~ - p ( R )  = ap  - apG. [21] 

The energy equation for a solitary vapour bubble, with allowance for the mass variability due 
to phase transition, and the equation of the vapour state are written as follows (Finch & Neppiras 
1973): 

0pc + 37pG 3R _ 3(7 ~- 1) I - -qR (L - -  Cg~T) d M ] ,  
[221 

dt R -  c2t K t_ 4 - n ~  at J 

where qR is the heat flux on the boundary and n is the vapour mass in a bubble. The vapour mass 
variation is considered to be completely defined by the amount of heat from the liquid: 

dM 4rrR 2 
- -  - - -  (qG = qL) .  [23]  
dt L 

Here qL is the specific heat flux to interphase from the liquid and qG is the heat flux to the vapour. 
Supposing that qL "> qc, with allowance for [23] we shall obtain 

OpG 37PG dR 3?Pc;o 
Ot -~ R Ot Rpc, L qL [24] 

This equation written in terms of the mixture density p = E/(4/3nR3N) (N = the bubble number 
per unit volume) is of the form 

dp6 ?PG ~P 37Pc,0 
Ot pE Ot RpoL qL. [25] 

When deriving [25] it was assumed that PG '~ PL, P ~ PL,  ~ '~ 1, C0 < eL and the homogeneous 
model relations were used, 

dV 1 dp dR 1 dV 
dt - pZ dt " dt - 4nNR 2 dt " [26] 

The value 7P/P~ in [25] is the square of the low-frequency sound velocity (c 2) in a bubble mixture 
which is defined on the basis of local values for pressure and void fraction in a wave. If this value 
is expanded into a series of terms of the initial medium state, 

(Oc2~ Ap, [27] 
c 2 = c~" + \ Op J,  = ,o 

then, as has been shown by Nakoryakov et al. (1975), [5] is obtained. 
Differentiating [25] once with respect to t and using [5],  [20]  a n d  [2] we reduce the initial system 

of  equations to one equation: 

a2Pet 2 CO ex ~32p 7 + i  2 02 f Ap2"~ 3'p O3P 37Po OqL 
Co ~5x2 ~-~o ) 2fl + 2 .  • [281 - -  2? = ~ OtOx 2 RpGL Ot 

In the case where there are no phase transitions on the bubble-liquid boundary (qL = 0) (i.e. a liquid 
with gas bubbles), [28] turns into the Boussinesq equation for a pressure perturbation. In terms 
of  this approximation, the wave dynamics of gas-liquid systems were studied by Gasenko et al. 
(1977). 

Equation [28], as the characteristic velocity of wave propagation, contains the value 
c0 = (?po/PoEo) '2, so the two-temperature model immediately yields the correct value for the 
characteristic sound velocity in the vapour-liquid mixture observed in our experiments. 

4. HEAT FLUX ON THE B U B B L E - L I Q U I D  B O U N D A R Y  

In the case where phase transitions exist (i.e. qL ~ 0), then the question arises as to how qL is 
related to the amplitude of a perturbation p. Practically, the problem consists of  determining the 
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heat flux qt. To do this, we consider the problem of a temperature field near a bubble of constant 
radius R0, the temperature of whose boundary is always on the saturation line and corresponds 
to the instantaneous pressure value in the system. Approximating the constancy of the boundary 
of  R0 is suitable for low-intensity perturbations, when the radius of the vapour bubble does not 
change considerably from its initial value. In the case when V/~L/CO < 1, where at = thermal 
diffusivity of the liquid, co = frequency of perturbation and 1 = distance between bubbles, we can 
assume that at infinity the temperature of the liquid is equal to T O (the initial temperature of the 
liquid). The solution of  such a problem is well-known and for the initial conditions T(0, r) = To, 
can be written as 

_ 2 L ~ " d T  dr 
qL [29] 

The temperature perturbation in the boundary, AT, is related to the pressure perturbation in the 
system Ap, by the Clapeyron-Clausius equation [7]. For small pressure perturbations Apo/p o < I, 
we can assume that PL = const and 

The heat flux qL(t) can be written in terms of the pressure perturbation in the mixture: 

pLCpLTo a~LL~'dp dr 

qL-- pGL ~ /~ - J0  dt x / t - - r "  
[31] 

It should be noted that such an approach to the determination o fq t  does not allow the possibility 
of obtaining an equilibrium situation. Small as a perturbation may be, T(t) = To is always constant, 
i.e. the model does not possess any mechanism allowing phase temperatures to be equalized. It is 
obvious that this is due to the fact that the lengths of  the heat waves are much smaller than the 
distances between bubbles and, hence, are much smaller than the length of an acoustic wave. The 
use of the homogeneous model assumes that the length of an acoustic wave is much greater than 
the distances between bubbles. In the case where the lengths of the heat waves are of the order 
of the acoustic ones, then the wave propagation can be considered in terms of the equilibrium model 
described in the first paragraph. The heat flux qL can be determined differently, in order to eliminate 
the restriction imposed on the length of the heat waves. 

To determine the heat flux, we will use the cellular model of a vapour-liquid medium (Nigmatulin 
1978). We will assume that each bubble of radius R is surrounded by a liquid cell of  radius .~. 
For the boundary of  this cell we will formulate the adiabatic conditon 

( ( ? T ) = o ,  [32] 

as distinguished from the previous condition T,,~. = To. 
The radius of the cell, ~', is determined, according to the cellular model, using the void fraction 
as follows: 

:~ = R "  ~ - I..3 [ 3 3 ]  

The heat flux is found by solving the heat conduction equation for the interval R ~< r <~ ~:  

~V I'e:T 2 d r~  
= at L-ff~-r 2 + - [34] d~ r &]" 

The homogeneous initial condition is T(r, O) = To; the boundary conditions are T(R, t) = T,(t) 
and [32]. Solving the equation by the Laplace method, we will obtain, considering [30], an image 
,J for the heat flux on the interphase boundary: 

( dT = 
.~¢ ).t dr ] G(s')3t(AP)' [351 
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where 

F £;_,+ __ {] 
G ( s ' ) = P - ~  I £ c o s h ( /  £ ' ~ - I s i n h ( l  £ ~  

[36] 

Lx/aL \ X/aU \ X/a ] 
is the transfer function of the bubble-cell system, s~ = Laplace parameter, ~(Ap) = image of the 
initial pressure perturbation, / = ~1' - R0 and ) 'L = thermal conductivity of the liquid. 

As follows from [36], the asymptotic value of G(Sl) for Sl -* oc (co - ,  oo, t -*0) is equal to 

G(sj)~.  Po L - - . 

Moving to the original of image [35], we will obtain, considering [37], an expression for the heat 
flux, which corresponds to [29]. 

The case st ~ 0  (t ~ oc, co ~ 0 )  determines the low-frequency asymptotes of G(Sl) and qt- Using 
the expansion of an exponent into a series, we will obtain, with an accuracy of -,-s~, the following 
asymptotic value of G(s~): 

~.LT0 3~ + 12 / 
. . . . .  sl. [38] G(sl)  = p c L  2R 2 ae 

At E ,~ I this expression assumes the form 

2,To R 
G(Sl) . . . .  Sl. [39] 

p c L  3E0aL 

Moving to the original, we obtain 

CpL pc To R Op [40] 
qL - -  3E0PGL Ot" 

Substituting the heat flux [40] into [28] and neglecting the dispersion and dissipative effects 
(fl --~/ --0), we will obtain: 

632p 4 63"-p .; + l co 632 : Ap2 
63t 2 (1+~Co) 63x 2 27 ( i + c ~ ,  ]c~" 63x2\~o ! = 0 .  [41' 

Since 2 2 Co~Co >3> 1 (for water: Po = 1 atm, cc "" I-3 m/s, Co ~ I00 m/s), then [41] can be written as 

632 (Ap2~  63 2p 2 63 2p 7 + 1 2 = O. [42] 
63t2 cc 63x2 2--'7-? c¢ ~ \ - ~ 0 /  

Equation [42] describes a wave propagation at a thermodynamically equilibrium velocity c,, and 
the linearized equation [42] coincides with the equilibrium model equation [19]. 

5. EVOLUTION OF A VAPOUR BUBBLE IN A PRESSURE WAVE 

The experience of studying the wave dynamics of gas-liquid systems has shown that the 
propagation of perturbations, their structure and dynamics are largely determined by the dynamics 
of a solitary bubble. So the correct description of the interphase interaction processes, in particular, 
heat and mass transfer, determines the dynamics of the vapour cavity and, finally, provides a 
correct description of the wave structure and dynamics. The dynamics of a vapour bubble is 
governed by two mechanisms. First, if the intensity of phase transitions is low, then the behaviour 
of the bubble is governed by the so-called "inertial" mechanism, i.e. the behaviour of the bubble 
can be described by the Rayleigh equation [3]. If the variation in size o fa  vapour bubble is governed 
by the phase transition processes, then the "thermal regime" of bubble fluctuation is considered 
to occur. The crucial moment in the description of the interphase heat and mass transfer is the 
determination of the heat flux qL with regard to the profile of pressure waves in the "thermal 
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regime" of bubble collapse or growth, as [29]. So special experiments studying the dynamics of  a 
vapour bubble in the field of a pressure wave have been carried out to check this fundamental fact. 

Synchronously with the pressure measurements in one of the pipe cross-sections, we took motion 
pictures at a speed of 8000 frame/s, which provided the correct correspondence of a pressure wave 
with the behaviour of a bubble therein. In the thermal regime, the bubble growth is determined 
by 

dR 
q L  = Lpc, ~ .  [43] 

It follows that 

R = i +  1 f' qL 
- jo  d,.  [441 

If we substitute qL by [29] and integrate [44], then we will find the law of bubble radius variation 
with time, R = R(t). It is easy to obtain some characteristic laws concerning the growth of a vapour 
bubble in the field of a wave. If the temperature T, and pressure p vary in a stepwise manner 
[T = T.g(t), where g(t)  = Heaviside's function], then we obtain the following law of  bubble radius 
variation: 

2)+t To Ap 1,2 R 1 + t [45] 
R 0  - -  ~ ' Ro (LpG)" x/~L 

If the pressure drop is linear (Ap = bt), then we have the following relation: 

R 4)+LT0b 
- - =  I _+ /32. [46] 
Ro 3Ro(LpG) 2 X/~L 

Thus the analysis shows that, depending on the profile of a pressure wave, the bubble growth 
law changes. The most frequently used bubble growth law R -,+ x/~ is valid for stepwise loads only. 

Let us refer to the results of  the experiment. Figure 3 shows that in low-intensity waves (a, b) 
a bubble generally preserves its original form during its growth and collapse. If the intensity 
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increases (c, d), it deforms essentially and usually disintegrates at the end of the compression phase. 
In the case of  a vapour-bubble mixture with ~0 -~ 0.01 and an initial "stepwise" perturbation with 
the intensity Ap = 105 Pa turns, as it passes in the medium, into a wave with a characteristic "sharp" 
pulse (d), whose amplitude is 2.6 times as high as the intensity of  the incident wave. The formation 
of the pulse seems to the connected with the decay and with the subsequent collapse of  vapour 
bubbles which occurs practically at the leading wave edge for the given amplitude of the pressure 
wave. 

The leading edge of  the pressure drop and rise in the above experiments can be approximated 
as a first approximation by the linear dependence Ap -,, bt. Then it follows from [46] that in this 
section the bubble radius variation law can be described by the dependence R ,-- t 3/2, whereas in 
the case of the horizontal section the regularity turns into R ,,-t ':2. Figure 4 compares the 
experimental data on bubble growth with the results obtained using both [46], [45] at the respective 
section of the pressure dependence, and [44] with the full wave shape taken into account. 

Satisfactory agreement between calculation and experiment is attained while using the factor x/~ 
in the addends of formulae [45] and [46]. In this case [45] at R0 = 0 takes the form of  the known 
solution (Plesset & Zwick 1954) for bubble growth from a micronucleus, which takes into account 
sphericity and mobility of the boundary. 

Thus the experiments have shown that the dynamics of a vapour bubble is susceptible to 
the wave profile and that to develop a model of wave propagation in a liquid with vapour 
bubbles, the suggested flow describes the mass transfer process in the form of [29] sufficiently 
well. 

6. ACOUSTICS AND LINEAR WAVES IN A V A P O U R - L I Q U I D  M E D I U M  

Let us consider a pressure perturbation as a harmonic wave with frequency to and 
wavenumber k, 

Ap = Ap0 exp(itot - ikx); 

and using [35] and [36] we will determine for this perturbation the heat flux on the interphase 
boundary: 

qL = G ( ito ) Apo exp(itot). [47] 

Substituting qL into [28], we will obtain the following dispersive relation (Orenbakh & Shreiber 
1986): 

k 2 = to__~2 [ 1 toi rpG3~P°L G (/to)] 

c° 2 [481 

,,o / 
The general form for the dependence of the phase sound velocity in a vapour-liquid medium on 
frequency is given in figure 5. The asymptotes of the dependence c = c(to) at to - .  0 are also given. 
In this case 

= c---~o I i3ypo G(ito) [49] 
toRpoL 

and the phase velocity tends to the equilibrium value ce [I 8]. Earlier models (Mecredy & Hamilton 
1972; Ardron & Duffey 1979; Nakoryakov et al. 1984b) yielded c --* 0 at to --* 0. 

Analysis of  the dispersive curve shows that in the case of  a vapour-water  mixture at P0 = 105 Pa, 
Co = 1%, there exists a thermodynamic equilibrium in the medium for a perturbation with 
to ~ 0. I Hz. Typically, in real experiments the duration ofperturbat ions ranged from 10 -2 to 10 -3 s. 
Therefore, signals propagating with equilibrium speed ce have never been registered in experiments. 

The dispersion law [48] can be assumed as a basis for predicting the dynamics of  linear waves. 
The structure of  linear waves can be calculated using the discrete Fourier transform and its 
numerical realization as an FFT algorithm. Expanding an initial perturbation into a discrete 
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Figure 5. Dispersion of sound velocity in a liquid with 
vapour bubbles. (a) High frequencies, water--p0 = 105 Pa, 
Ro = 10 -3 m; I, gas bubbles; 2, vapour bubbles; T O = 373 K. 
(b) Low frequencies; 3, calculation by [481; 4, calculations by 
Ardron & Duffey (1979) and Nakoryakov et al. (1984b). 

Fourier series and then, at a certain distance, "collecting" the harmonics  into a signal again, one 
can restore the structure o f  the dispersion-transformed signal. 

The formula for expansion o f  a linear wave into a finite sum o f  simple waves, 

p(x,t)= ~ Z. exp(ico.t-ik.x), [50] 

coincides at x = 0 with the reverse Fourier  t ransform formula: 

i-l I" i2nrnn'~ 
,o:   0Z.expt--y- ) [5U 

if p,~ = p(0, mat), co. = 2nn/lAt, t = rn At = sampling rate, T = IAt = time interval, 
m = 0, 1 . . . . .  l - 1. So, if the boundary  condit ion p(0,  mat) is known,  then the factors Z.  in [50] 
can be found as follows: 

Z. = 2~'oP. exp(.- i2nrnn ). [52] 

For  the fixed coordinate  x = x0, [50] is converted into 

/ - I  

p(x0, t) = ~ V.exp(ico.t), [53] 
n - - I  

where the expansion factors Vo are equal to 

V. = Z.  exp( - ik.xo). [54] 

Substituting the dispersion law k = k(co.) into [54], we can find the factors V. for a given x 
and then carry out the reverse Fourier  t ransform procedure to obtain the value o f  the 
functions p,~ = (xo, mAt). In the calculations it should be considered that  Tm~n = Xma,/Cm.x and 

Tma x = X m a x / C m ,  n . 

The evolution o f  waves in a bubble vapour- l iquid  medium is shown in figure 6. 
As can be seen, the format ion o f  a wave and its propagat ion  are strongly affected by the intensity 

o f  the interphase heat transfer. Here 0 = 3ypo/Ro p2L is the factor  o f  OqL/at in [28]. The existence 
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of  the sound velocity thermal dispersion should lead, as seems to be the case, to the appearance 
of  a high-frequency precursor. To demonstrate the existence o f  the thermal dispersion, one may 
artificially assume that Im(k) = 0. In this case [figure 6(d)] we actually obtain oscillations leading 
the basic low-frequency signal. 

7. P R O P A G A T I O N  OF N O N L I N E A R  W A V E S  IN A L I Q U I D  
WITH V A P O U R  B U B B L E S  

Equation [28], describing the propagation of  nonlinear waves, can be formally factorized, i.e. 
waves going "to the right" or "to the left" can be singled out. Using the mode of  nonlinear wave 
dynamics (Karpman 1973), we can obtain an equation for a wave running to one side: 

Op + Op + r + l coAp ~p a2p a3p 3 ~po 
at C°~x ~ ~ x - " F ~  ~+#c°ax ~-2  ~poz.--qL 

[55] 

Analysis o f  the obtained dispersive relations has shown that qt can be taken in the form [29]. 
Then [55] will assume the form 

dp dp ~ Op aZp (~3p m~/-aL ~' dp/a,' dt" at + Co ~x + Coap ~ - .  ~ + #Co = 
dx 3 2 n ~ / ~ 0 2 J 0 ~ / t - t '  

[56] 
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where 

3yp0 PL c,L(d~-pT), 

m =  
pcL 

By employing similarity theory methods it is possible to obtain from [56] the minimal number 
of similarity criteria that are needed to determine the evolution of the wave process in vapour-liquid 
media. For this purpose, we reduce [56] to a dimensionless form using the initial perturbation 
parameters: the amplitude Ap0, the duration 10 (for perturbations of finite duration) and the 
quantity c0 as the characteristic velocity. The model equation [56] will take the form (Nakoryakov 
et al. 1982): 

@, 
?p* Op* Op* M g,2p, M 633p * [-r 3-c 
- -  - -  = j ~ dr ' ,  [57 ]  

where 

C o I X Ap 
r=-- ;10 ~=10;  P * = A P 0 '  

It follows from [57] that the dynamics of pressure perturbations in a vapour-liquid medium is 
characterized by the following criteria. 

• For a perturbation of finite duration: 

= 1o[(i, + I)•p0-]'"- 
_1' 

which determines the contribution of nonlinear effects (as compared with dis- 
persive ones) into the wave profile distortion; 

] - ~ _ ~ . _ t ,  ~ 7p°aLl° ],.2 
W=mL2nRo~,),~ro~ / + I) 

which characterizes the relative role in the interphase heat transfer and nonlinear 
effects; 

(y + 1)coapolo 
R e -  

2"/p0 t/ 

which is the Reynolds number, characterizing the dissipation in a medium without 
phase transitions. 

• For shock wave-type perturbations: 

m F  a L ~ °  ] '2 
W ,  = Wa- ' . :=  L4nRguox/~oJ ' 

which determines the effect of the phase transition and nonlinear twisting of a 
wave; 

m 

which is the Mach number. 

u0 ( 7 + I ) A p 0  

c0 2ypo ' 

At high values of W (or W, )  the determining effect on the evolution of waves should be exerted 
by a phase transition; when W ---, 0, it is the dependence of the wave behaviour on nonlinear and 
inertial effects which should become essential. This suggests the possibility of the existence, in a 
bubble medium with phase transitions, of diverse wave patterns: wave packets, solitons, shock 
waves of monotonous or oscillatory structure. 
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In the case of a weak influence of phase transitions (W, ,  W--,0), the necessity arises to allow 
for other dissipative effects (viscous friction in oscillations of bubbles, acoustic losses due to liquid 
compressibility). These effects can be accounted for within the framework of the model using the 
"effective" viscosity r/, then dissipation is characterized by the Reynolds number Re. 

At Re-i > W (for shock waves a /Re > W*), the determining dissipative mechanism in the wave 
evolution becomes that associated with viscous losses. However, one should note the following: 
the actual range reached by the values of W, e.g. at R0 ~ 1 mm and E0 "- 10 -2 for the majority of 
vapour-liquid media (liquid metals, vapour-water media, cryogenic liquids) is of the order of 
50-10 -4, whereas the quantity Re -~ for these conditions varies from 10 -3 to 10 -4. 

The similarity criteria were assumed as a basis for planning a program of experiments and their 
subsequent processing. It is necessary to choose the parameters of a boiling flow and the 
characteristics of an initial perturbation such that a much wider range of variation of the criteria 
W and a (M and W,) would be available. For this purpose, an effective method of investigation 
is the shock-tube method, allowing one not only to fix the structural parameters of a vapour- 
liquid medium and vary the vapour phase dispersion and concentration degree, but also to obtain 
a wide range of the initial characteristics such as duration and intensity. The analysis of 
experimental data on the basis of the above similarity criteria has revealed a number of regions 
of IV, a and M where the character of the evolution of the waves differs. 

Let the region W,  >~! be called the "thermal" regime. The essential feature here is 
the dominating effect of the interphase heat transfer. It has been found in experiments that 
nonlinear and inertial effects do not take part in the formation of waves at all [figure 7(a)]. This 
allows one to consider the evolution of waves on the basis of the linear equation which follows 
from [57]: 

~p * c3p * M I/2 Ot' + w .  [581 

The solutions of [58] for various initial perturbations can be obtained by the Laplace transform. 
For example, for a stepwise initial perturbation the solution of [58] can be written as (Nakoryakov 
& Shreiber 1979): 

Ap = erfc 
Apo 
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I, Calculation by [59]; 2, calculation by [28], 0 = 0.222 m-~; ©,  experiment. 

However, the comparison of the calculation using this formula with the respective experiment 
points to a certain discrepancy in the data (figure 8). One can understand the reason by analysing 
the solutions of the complete equation [28], where qL is determined by [31]. This equation has the 
form of the Boussinesq equation with the integral r.h.s, and describes waves propagating to both 
sides. An example for numerical modelling of  an initial perturbation on the basis of  [28] is shown 
in figure 9. The calculations have been carried out using the above FFT transform procedure. One 
can see that if the interphase heat transfer is intensive enough (0 = 0.02), the initial pulse has no 
chance to divide into two perturbations and evolves as a whole. Therefore, under such conditions, 
the conversion to the evolution equation, describing the wave moving on one side is invalid, and 
the wave propagation should be calculated on the basis of the complete equation [28]. In this 
case the agreement between the calculated and experimental result is rather satisfactory (figure 8, 
line 2). 

A typical picture of the progress of a finite-duration wave process is shown in figure 7(b). 
A substantial spread and decay of the pressure wave amplitude leads to the virtual disappearance 
of the perturbation already at the distance x ~ 1 m. Such a wave evolution in this regime is 
observed up to an incident perturbation intensity M ,-, 0.5. With a further increase in the incident 
perturbation intensity, the waves in a vapour-liquid medium strengthen--just as during their 
reflection from a wail, and as in a direct wave (figure 10). The reported elements on the 
amplification of waves have not been described theoretically as yet. This requires more detailed 
theoretical and experimental studies on the formation of waves and on the behaviour of a 
vapour-liquid medium therein. In the present paper such tests are presented only as an illustration 
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of  the application range for the derived criteria and model equation [57] in the analysis of  the wave 
dynamics• 

The region W,  < 0.1 is the "inertial" regime• In this region the character of  the evolution of  
finite-length pressure waves depends on the number a. There exists a value tr , ,  determined by the 
type of  initial perturbation only, that at a < tr ,  a wave packet develops in a vapour-liquid medium 
[figure l l(a)], whereas at tr >/ tr ,  solitary waves develop [figure l l(b)]. In this regime, there are 
shock waves with two types of thin structure: monotonous (M < 0.3) and oscillatory (M > 0.3) 
(figure 12), with the parameters (shape, steepness of the leading edge, maximum pressure in 
oscillation, velocity) being preserved at large distances• The different character of  the wave process 
revealed in the experiments is in complete agreement with the results of  the theoretical analysis of 
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the solution to the model equation [57] for W, ~ 0. Really, at W,  = 0 the model equation turns 
into the well-known Burgers-Korteweg- de Vries equation, admitting, for example, solutions in the 
form of a solitary wave (i.e. a soliton): 

F 47 ]'"2{ po "~"2Ro 
- -  - -  1 2 "  6 + l ) j  \Apm.x,] ~ [60] 

The calculation by [60] and the shape of the wave determined experimentally are presented in figure 
13. 

Figure 14 shows the velocity of the propagation of  perturbations in a vapour-liquid medium at 
W, < 0. !. As follows from the analysis of the similarity numbers and model equation [57], the wave 
packets move with the frozen sound velocity Co, the velocities-u of solitary waves and shock waves 
are, respectively, governed by the relations: 

u l + ( y + l ) A p ~  and u l + ( 7 + l ) A p o  
c~ 67Po Co 47,o0 

The transition region is 0.1 ~ W, < 1. Above we have considered the main laws governing the 
progress of wave processes in two limiting cases in which the propagation of perturbations can be 
successfully calculated from simple analytical expressions. We will now consider some regularities 
in the behaviour of the waves when they pass from the inertial regime to the thermal one. 

The data on the wave propagation with a ~ 9 (a soliton in the "inertial" regime), presented in 
figures 15 and 16, clearly confirm the following fact. As the values of  W, increase, from being 
extremely small, the character of the evolution of waves varies--the interphase heat transfer begins 
to influence the process to a greater degree. Although at small distances, with the growth of W,  
the perturbation shape still corresponds to the shape of the soliton, this formation is no longer a 
stable one. In the course of further evolution, the initially balanced influence of the inertial and 
nonlinear effects is replaced by the dominating influence of interphase heat transfer. The initial 
perturbation is transformed into a wave with markedly larger spatial-temporal scales than those 
of the soliton with the same amplitude. A further increase in W,  leads to the perturbation 
undergoing evolution in the same way as in the "thermal" regime considered above. An analogous 
situation is also observed at further values of a. Such a solitary soliton, a multi-soliton perturbation 
and a wave packet, which are stable formations in the case where W,--* 0, gradually degenerate, 
with an increase in W,,  into a smooth bell-shaped wave of the "thermal" regime and the faster 
they degenerate, the higher the value of  W, and the smaller the value of a. 



WAVE DYNAMICS OF A VAPOUR-LIQUID MEDIUM 673 

0 
d 

Experiment 

/', l /  
I ~ I ~ X"  0 . 0 ~  m 

I ] 2 .10-3s  

CaLcuLation 

I \ 
l \  / \  
i \  / \ \  

i "\ " X -  0 . 0 5  m 
; L .  / ~ . - - . - - - . ~ , .  

o 
(5 

i 

/ \ o. t5  
, , . . /  \ . _ . . , , .  

.~"'\0.42 
a,/" . ~  

2.10-35 
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The degree of  perturbation attenuation is different at different values of  W,.  It is well-illustrated 
in figure 16 where a change in the wave amplitude with a ~ a ,  is shown. The observed difference 
in the attenuation laws is, first of  all, connected with the change in the interphase heat transfer 
contribution to the formation and motion of  perturbations. Two limiting calculated lines 1 and 
2 in figure 16 show, respectively, the attenuation of a soliton in a bubble system with the frozen 
phase transition (calculation by [57] at W, = 0) and the attenuation of a perturbation due to the 
interphase heat transfer alone (calculation by [58]). One can clearly see that in a vapour-liquid 
medium the initial perturbation, which has covered a distance of  approx. I m, can either disappear 
completely (i.e. reduce its amplitude by more than a factor of 100) or remain practically unchanged 
(i.e. reduce its amplitude only by a factor of  1.25). 

Analytical inspection of the unsteady wave process progress within the range 0.01 < W,  < 1 is 
extremely difficult, and in this case a numerical solution of the model equation or the complete 
set of  equations [56] or [57] is more expedient. The accuracy of  the numerical integration of [57] 
has been tested by comparison of the results both with well-known numerical solutions of  the KDV 
equation (Berezin 1977) and with analytical solutions of [58]. Also, the numerical solution of the 
linearized equation [56] was compared with that solved using the FFT technique on the basis of 
the determined dispersive equation [49]. 

The values of the factors in [57] were calculated for the initial conditions of  the experiments, 
and the solutions of the equations were derived at distances x corresponding to the coordinates 
of the probes. Figure 17 shows the results of  the "shock-wave"-type calculations. Figure 18 shows 
a calculation of the finite-length wave structure which is compared with the results of  the 
experiments. 

i O.1 
o.o 0.2 0.4 0.6 o.e t .o  

x ( m )  

Figure 16. Attenuation of a solitary wave in a vapour-liquid medium. I, Water--p0 = 0.13 MPa, (0 = 0.01. 
Ro= 1.5mm; M =0.18, o =9, W =  1.5; 2, water---O.5 0.015 1.4 0.2 9 0.35; 3, Freon-21~.19 0.01 1.2 

0.3 12 0.25; 4, Freon-12---0.66 0.015 1.3 0.25 11 0.06; 5, Freon-12--1.3 0.01 I 0.13 9 0.07. 
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Figure 17. Evo lu t i on  o f  a "s tep - type"  in i t ia l  per tu rbat ion .  

8. SHOCK WAVES 

A very important problem of the gas dynamics o fa  vapour-liquid medium concerns the existence 
of shock waves. 

As is known, the formation of shock waves is connected with the competition between two 
mechanisms--nonlinearity and dissipation. The corresponding similarity criterion characterizing 
the contribution of these mechanisms to the wave evolution in a bubble vapour-liquid medium can 
be obtained from [56] by comparing the integral and the nonlinear sides. 

At large values of W, (W,  > 1) the interphase heat transfer is dominating in the wave evolution, 
and originally steep perturbations should transform into gently sloping ones. 

In this case, the leading edge of a wave widens considerably as it propagates. Its length, found 
from the maximum inclination region, is comparable with the distance covered by the wave. To 
compensate for the severe flattening of the leading edge by increasing, within certain limits, the 
intensity of the original perturbation turns out to be impossible--the evolution of a wave with a 
large Mach number occurs analogously. The velocity of such gently sloping waves corresponds to 
the value Co. 

If one changes the thermophysical properties of the medium so that the value of the criterion 
W, decreases, then the flattening of the leading edge becomes slower. The wave structure begins 
to depend on the intensity. If the intensity is weak (M < 0.3), the wave form is always monotonous; 
at M > 0.3, the inertial effects form an oscillating structure in the starting section (figure 19). A 
finite-width jump occurs in the medium. Its existence is, however, limited to small distances. 
Already, the oscillations degenerate at 0.5 m from the entrance of a perturbation into the medium, 
and at large distances the influence of nonlinearity disappears too. The wave profile is formed 
mainly by the interphase heat transfer. 

The duration of the existence of the shock-profile essentially increases with subsequently 
increasing W,.  At W, --- 10 -2, quasi-stationary shock waves were present over the entire length 
of the working section. Depending on the intensity of a wave, either the monotonous or the 
oscillatory wave structure (figure 12) was realized. The velocity of waves depends on their 
amplitude. 

0 4 0  
I~. ] ~ /% x=0'24 m x=0"34 m 

/ \ / 
/ \ , I  / ~" 0.05 , \ ~ N ~  ~ 

0 4 2 3 

t ( m s )  

Figure 18. Evo lu t i on  o f  a wave w i th  a > a . ] Calculat ion by [56]. Water - -po  = 0 . ]8  M P a ,  ~o = 0.01, 
R 0 = 1.5 mm,  ~ = 36.5, W = 0.67. 
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Figu re  19. D e g r a d a t i o n  o f  a s h o c k  wave .  Exper imen t :  F r e o n - 2  l - - p 0  = 0 .185 M Pa,  t 0 = 0.0 I, R 0 = 1.2 ram,  
Ap0 = 0 .69 10 s Pa.  

The time of  existence of a shock wave t* can be estimated assuming that during this time the 
equilibrium between the nonlinear effects and dissipation still exists. Let us assume that the 
structure of  the wave front is close to a "step".  In this case the heat flux qL can be written as 

/:)L CpL 
q L :  n ~ , ( d T ~  AP • [61] 

Substituting [16] into [28] and making this equation dimensionless with respect to the 
characteristic time t*, we find the following conditions for the existence of shock waves in the 
medium (Nakoryakov et al. 1984a): 

t* nR2o (Apoy  [62] 
< 4 a L  m------i \~o/ " 

The distance from the entrance of a perturbation into the medium x*, at which a shock wave exists, 
can be estimated taking Co as the chartacteristic velocity. 

The values of  x* for some vapour-l iquid media (Apo/Po=0.3) are: water, p0=0.1  MPa, 
T0= 100°C, x* = 0.012m; water, P0= 8.5 MPa, T0= 300°C, x* = 13.6m; Freon-12, 
P0 = 0.66 MPa, To = 25.4°C, x* = 11 m. 

As can be seen, in a vapour-l iquid medium existing at low pressures shock waves do not appear. 
Estimations in accordance with [62] show that a similar situation can also be observed for boiling 
liquid metal media. That  is why Grolmes & Fauske (1968) did not discover that the velocity 
depends on the amplitude. On the contrary, in water boiling at high pressures shock waves can 
form, which is confirmed by the wave velocity data and experiments of  Nakoryakov  et al. (1982) 
and Sarkisov et al. (! 981). 

The results of  the calculation by [62] for x* are in good agreement with the experiments. As in 
the experiment shown in figure 7(a), no pressure jump is observed. Here x* = 5 mm. For the 
conditions of  the experiment shown in figure 19, x* = 0.38 m, and at distances which are greater 
than this value the shock wave (as can be seen) degenerates. In the case shown in figure 12, 
x* = 20 m. Here the parameters of  the shock wave are the same along the entire length of  the 
experimental setup. 

The generalized plot given in figure 20 is an illustrative example showing the possible ways of 
evolution for initial shock waves in a boiling liquid. The wave profiles are given here for the time 
t ,--5. l0 -3 s. Using figure 20, the similarity criteria, W ,  and M, and condition [62], one can 
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Figure 20. Generalized picture of a pressure wave formation in a vapour-liquid medium with bubbles 
s t r u c t u r e .  

successfully predict the dynamics of  finite-amplitude pressure jumps in any vapour-liquid media 
(cryogenic liquids, liquid metals, molten organic solid substances etc.). 

For sodium, boiling at p = 0.1 MPa, with the medium parameters E0 = 0.01, R0 = 1.5 mm and 
an initial perturbation Apo/Po ~ 0.4, the value of the criterion W,  ~ 15. As we have already seen, 
for such values of  W,  the pressure pulses in the medium will be considerably diffused and 
attenuated and the leading edge of the initial shock wave will become much flatter. On the contrary, 
in the case of  hydrogen, boiling under the same initial conditions, there are very small values of  
W,  ( W ,  ~ 6.10-4). This means that the wave dynamics of  such a medium will be governed in the 
main by the inertial and nonlinear effects. Low values of  W,  ( W ,  ,-, i0 '3) can also be obtained 
for a vapour-water  mixture at P0 ~ 3 MPa. 

REFERENCES 

ARDRON, K. H. & DUFFEY, R. B. 1979 Acoustic wave propagation in a flowing liquid-vapour 
mixture. Int. J. Multiphase Flow 4, 303-322. 

AVDONIN, V. I. & NOVIKOV, I. I. 1960 Sound velocity on vapour-liquid phase equilibrium curve. 
Sound velocity in saturated water vapour. Zh. priM. Mekh. tekh. Fiz. l ,  58-62. 

BATCHELOW, G. 1968 Compression waves in a suspension of  gas bubbles in a liquid. Mekh. Sb. 
Inoctr. Statei 3, 67-84. 

BEREZIN, YU. A Numerical Study of  Nonlinear Waves in Rarefied Plasma. Nauka, 
Moskow. 

DE1CH, M. YE., FILIPOV, G. A. & STEKOLSHCH1KOV, YE. V. 1964 Sound velocity in two-phase media. 
Teploenergetika 8, 33-36. 

FINCH, R. D. & NEPPIRAS, E. A. 1973 Vapour bubble dynamics. J. acoust. Soc. Am. 53, 
1402-1410. 



WAVE DYNAMICS OF A VAPOUR-LIQUID MEDIUM 677 

GASENKO, V, G., NAKORYAKOV, V. E. & SHREIBER, I. R. 1977 Burgers-Korteweg-de Vries 
approximation in wave dynamics of gas-liquid systems. In Nelineinye Volnovye Protsessy v 
dvukhfaznykh sredakh (Edited by KUTATELADZE, S. S.), pp. 17-35. Institute of Thermophysics, 
Novosibirsk. 

GROLMES, M. A. & FAUSKE, H. K. 1968 Comparison of the propagation characteristics of 
compression and rarefaction pressure pulses in two phase one component bubble flow. Trans. 
Am. nucl. Soc. 11, 683-685. 

KARPMAN, V. I. 1973 Nonlinear Waves in Dispersing Media. Nauka, Moskow. 
KOGARKO, B. S. 1961 On one model of cavitating liquid. Dokl. Akad. Nauk SSSR 137, 

1331-1333. 
KUTATELAOZE, S. S., NAKORYAKOV, V. E. & POKUSAEV, B. G. 1979 Experimental investigation 

of wave processes in gas- and vapour-liquid media. In Two-Phase Momentum Heat and 
Mass Transfer in Chemical Process & Energy Engineering, Vol. I, pp. 47-50. Hemisphere, 
New York. 

KUZNETSOV, V. V., NAKORYAKOV, V. E., POKUSAEV, B. G. & SHREIBER, I. R. 1978 Propagation of 
perturbation in gas-liquid mixture. J. Fluid Mech. 85, 85-96. 

LANDAU, L. D. & LIFSH1TS, YE. M 1953 Mechanica Sploshnych Sred. Gostekhizdat, Moskow. 
MECREDY, R. C. & HAMILTON, L. J. 1972 The effects of nonequilibrium heat, mass and momentum 

transfer on two-phase sound speed. Int. J. Heat Mass Transfer 15, 61-72. 
NAKORYAKOV, V. E., SOBOLEV, V. V. 8£ SHREIBER, I. R. 1972 Long-wave perturbations in gas-liquid 

mixture. Izv. Akad. Nauk SSSR 5, 71-76. 
NAKORYAKOV, V. E., SOBOLEV, V. V. d~, SHRE1BER, I. R. 1975 Finite-amplitude waves in two-phase 

media. In Volnovye Protsessy v Dvukhfaznykh Sistemakh (Edited by KUTATELADZE S. S.), 
pp. 5-53. Institute of Thermophysics, Novosibirsk. 

NAKORYAKOV, V. E. (~ SHREIBER, I. R. A model of perturbation propagation in vapour-liquid 
mixture. Theploph. Vysokich Themper. 17, 798-803. 

NAKORYAKOV, V. E., POKUSAEV, B. G., PRIBATURIN, N. A. & SHREIBER, I. R. 1982 Propagation of 
finite-amplitude pressure perturbations in a bubble vapour-liquid medium. Zh. prikl. Mekh. tekh. 
Fiz. 3, 84-90. 

NAKORVAKOV, V. E., POKUSAEV, B. G., PRmATUR1N, N. A. & SHREIBER, I. R. 1984a Shock waves 
in boiling liquid. Int. Commun. Heat Mass Transfer 11, 55-62. 

NAKORVAKOV, V. E., POKUSAEV, B. G., PRmATURIN, N. A. & SHREIBER, I. R. 1984b Acoustics of 
a liquid with vapour bubbles. Akust. Zh. 30, 808-812. 

N1GMATULIN, R. I. 1978 The Fundamentals of Heterogeneous Mechanics. Nauka, Moskow. 
NIGMATULIN, R. I. 1982 Mathematical modelling of a bubbly liquid motion and hydrodynamical 

effects in wave propagation phenomena. Appl. scient. Res. 38, 267-289. 
ORENBAKH, Z. M. & SHREIBER, I. R. 1986 Wave propagation in a liquid with phase transitions. 

Akust. Zh. 32, 76-80. 
POKUSAEV, B. G., KORABEL'NIKOV, A. V. & PRIBATURIN, N. A. 1981 Pressure waves in a liquid 

containing vapour bubbles. Fluid Mech.-Soviet. Res. 11, 67-94. 
PLESSET, M. S. & ZWlCK, S. A. 1954 The growth of vapour bubbles in superheated liquids. J. appl. 

Phys. 25, 493-500. 
RADOVSKII, I. S. 1970 Sound velocity in two-phase vapour-liquid systems. Zh. prikl. Mekh. tekh. 

Fiz. 5, 78-85. 
SARKISOV, A. A., POPOV, I. A. & LUKYANOV, A. A. 1981 Boiling flow dynamics with shock 

perturbations. In Teploobmen, Temperaturnyi Rezhim i Gidrodinamika pri Generatsii Para, 
Nauka, pp. 39-48. Nauka, Leningrad. 

SEMYONOV, N. I. & KOSTERIN, S. I. 1964 Results of studying sound velocities in moving gas-liquid 
mixtures. Teploenergetika 6, 46-51. 

SYCHEV, W. V. 1961 Sound velocity in water and water vapour on the saturation line. Ingenerno 
Physich. Zh. 4, 64-69. 

VIGUN, A. I. 1938 Propagation of perturbations in a two-phase liquid-vapour system. Zh. tekh. 
Fiz. 8, 275-285. 

WIJNGAARDEN, L. 1969 On the equations of motion for mixtures of liquid and gas bubbles. J. Fluid 
Mech. 33, 465-475. 


